Fast simulation of new coins from old
Let S\subset (0,1). Given a known function f:S\to (0,1), we consider the problem of using independent tosses of a coin with probability of heads p (where p\in S is unknown) to simulate a coin with probability of heads f(p). We prove that if S is a closed interval and f is real analytic on S, then f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let S\subset (0,1). Given a known function f:S\to (0,1), we consider the problem of using independent tosses of a coin with probability of heads p (where p\in S is unknown) to simulate a coin with probability of heads f(p). We prove that if S is a closed interval and f is real analytic on S, then f has a fast simulation on S (the number of p-coin tosses needed has exponential tails). Conversely, if a function f has a fast simulation on an open set, then it is real analytic on that set. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0309222 |