Some limit transitions between BC type orthogonal polynomials interpreted on quantum complex Grassmannians
The quantum complex Grassmannian U_q/K_q of rank l is the quotient of the quantum unitary group U_q=U_q(n) by the quantum subgroup K_q=U_q(n-l)xU_q(l). We show that (U_q,K_q) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. K_q-biinvariant matrix coefficients of finite- d...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1998-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The quantum complex Grassmannian U_q/K_q of rank l is the quotient of the quantum unitary group U_q=U_q(n) by the quantum subgroup K_q=U_q(n-l)xU_q(l). We show that (U_q,K_q) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. K_q-biinvariant matrix coefficients of finite- dimensional irreducible representations of U_q, as multivariable little q-Jacobi polynomials depending on one discrete parameter. Another type of biinvariant matrix coefficients is identified as multivariable big q-Jacobi polynomials. The proof is based on earlier results by Noumi, Sugitani and the first author relating Koornwinder polynomials to a one-parameter family of quantum complex Grassmannians, and certain limit transitions from Koornwinder polynomials to multivariable big and little q-Jacobi polynomials studied by Koornwinder and the second author. |
---|---|
ISSN: | 2331-8422 |