Some limit transitions between BC type orthogonal polynomials interpreted on quantum complex Grassmannians

The quantum complex Grassmannian U_q/K_q of rank l is the quotient of the quantum unitary group U_q=U_q(n) by the quantum subgroup K_q=U_q(n-l)xU_q(l). We show that (U_q,K_q) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. K_q-biinvariant matrix coefficients of finite- d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1998-06
Hauptverfasser: Dijkhuizen, Mathijs S, Stokman, Jasper V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantum complex Grassmannian U_q/K_q of rank l is the quotient of the quantum unitary group U_q=U_q(n) by the quantum subgroup K_q=U_q(n-l)xU_q(l). We show that (U_q,K_q) is a quantum Gelfand pair and we express the zonal spherical functions, i.e. K_q-biinvariant matrix coefficients of finite- dimensional irreducible representations of U_q, as multivariable little q-Jacobi polynomials depending on one discrete parameter. Another type of biinvariant matrix coefficients is identified as multivariable big q-Jacobi polynomials. The proof is based on earlier results by Noumi, Sugitani and the first author relating Koornwinder polynomials to a one-parameter family of quantum complex Grassmannians, and certain limit transitions from Koornwinder polynomials to multivariable big and little q-Jacobi polynomials studied by Koornwinder and the second author.
ISSN:2331-8422