The Distribution of the Carlitz Binomial Coefficients Modulo a Prime

For a nonnegative integer n , and a prime P in F q [ T ] , we prove a result that provides a method for computing the number of integers m with 0 ≤ m ≤ n for which the Carlitz binomial coefficients ( m n ) C fall into each of the residue classes modulo P . Our main result can be viewed as a function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2018-09, Vol.22 (3), p.601-617
1. Verfasser: Nguyen, Dong Quan Ngoc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a nonnegative integer n , and a prime P in F q [ T ] , we prove a result that provides a method for computing the number of integers m with 0 ≤ m ≤ n for which the Carlitz binomial coefficients ( m n ) C fall into each of the residue classes modulo P . Our main result can be viewed as a function field analogue of the Garfield-Wilf theorem.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-018-0400-6