Automorphisms of semigroups of k-linked upfamilies
A family A of non-empty subsets of a set X is called an upfamily , if, for each set A ∈ A ; any set B ⊃ A belongs to A . An upfamily ℒ is called k-linked , if ∩ ℱ ≠ ∅ for any subfamily ℱ ⊂ ℒ of cardinality ℱ ≤ k . The extension N k ( X ) consists of all k -linked upfamilies on X . Any associative...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-10, Vol.234 (1), p.21-34 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A family
A
of non-empty subsets of a set
X
is called an
upfamily
, if, for each set
A
∈
A
;
any set
B
⊃
A
belongs to
A
. An upfamily
ℒ
is called
k-linked
, if
∩
ℱ
≠
∅
for any subfamily
ℱ
⊂
ℒ
of cardinality
ℱ
≤
k
. The extension
N
k
(
X
) consists of all
k
-linked upfamilies on
X
. Any associative binary operation ∗ :
X
×
X
→
X
can be extended to an associative binary operation ∗ :
N
k
(
X
) ×
N
k
(
X
) →
N
k
(
X
). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-018-3978-7 |