Automorphisms of semigroups of k-linked upfamilies

A family A of non-empty subsets of a set X is called an upfamily , if, for each set A ∈ A ; any set B  ⊃  A belongs to A . An upfamily ℒ is called k-linked , if ∩ ℱ ≠ ∅ for any subfamily ℱ ⊂ ℒ of cardinality ℱ ≤ k . The extension N k ( X ) consists of all k -linked upfamilies on X . Any associative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2018-10, Vol.234 (1), p.21-34
1. Verfasser: Gavrylkiv, Volodymyr M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A family A of non-empty subsets of a set X is called an upfamily , if, for each set A ∈ A ; any set B  ⊃  A belongs to A . An upfamily ℒ is called k-linked , if ∩ ℱ ≠ ∅ for any subfamily ℱ ⊂ ℒ of cardinality ℱ ≤ k . The extension N k ( X ) consists of all k -linked upfamilies on X . Any associative binary operation ∗ :  X  ×  X  →  X can be extended to an associative binary operation ∗ :  N k ( X ) ×  N k ( X ) →  N k ( X ). Here, we study automorphisms of the extensions of groups and finite monogenic semigroups. We also describe the automorphism groups of extensions of null semigroups, almost null semigroups, right zero semigroups and left zero semigroups.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-018-3978-7