Simulating Arbitrary Pair-Interactions by a Given Hamiltonian: Graph-Theoretical Bounds on the Time Complexity
We use an n-spin system with permutation symmetric zz-interaction for simulating arbitrary pair-interaction Hamiltonians. The calculation of the required time overhead is mathematically equivalent to a separability problem of n-qubit density matrices. We derive lower and upper bounds in terms of chr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2001-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use an n-spin system with permutation symmetric zz-interaction for simulating arbitrary pair-interaction Hamiltonians. The calculation of the required time overhead is mathematically equivalent to a separability problem of n-qubit density matrices. We derive lower and upper bounds in terms of chromatic index and the spectrum of the interaction graph. The complexity measure defined by such a computational model is related to gate complexity and a continuous complexity measure introduced in a former paper. We use majorization of graph spectra for classifying Hamiltonians with respect to their computational power. |
---|---|
ISSN: | 2331-8422 |