Bestvina's normal form complex and the homology of Garside groups

A Garside group is a group admitting a finite lattice generating set D. Using techniques developed by Bestvina for Artin groups of finite type, we construct K(\pi,1)s for Garside groups. This construction shows that the (co)homology of any Garside group G is easily computed given the lattice D, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2002-03
Hauptverfasser: Charney, Ruth, Meier, John, Whittlesey, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Garside group is a group admitting a finite lattice generating set D. Using techniques developed by Bestvina for Artin groups of finite type, we construct K(\pi,1)s for Garside groups. This construction shows that the (co)homology of any Garside group G is easily computed given the lattice D, and there is a simple sufficient condition that implies G is a duality group. The universal covers of these K(\pi,1)s enjoy Bestvina's weak non-positive curvature condition. Under a certain tameness condition, this implies that every solvable subgroup of G is virtually abelian.
ISSN:2331-8422