Gamma-ray bursts and X-ray melting of material to form chondrules and planets

Chondrules are millimeter sized objects of spherical to irregular shape that constitute the major component of chondritic meteorites that originate in the region between Mars and Jupiter and which fall to Earth. They appear to have solidified rapidly from molten or partially molten drops. The heat s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2004-07
Hauptverfasser: Duggan, P, McBreen, B, Carr, A J, Winston, E, Vaughan, G, Hanlon, L, McBreen, S, Metcalfe, L, Kvick, A, Terry, A E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chondrules are millimeter sized objects of spherical to irregular shape that constitute the major component of chondritic meteorites that originate in the region between Mars and Jupiter and which fall to Earth. They appear to have solidified rapidly from molten or partially molten drops. The heat source that melted the chondrules remains uncertain. The intense radiation from a gamma-ray burst (GRB) is capable of melting material at distances up to 300 light years. These conditions were created in the laboratory for the first time when millimeter sized pellets were placed in a vacuum chamber in the white synchrotron beam at the European Synchrotron Radiation Facility. The pellets were rapidly heated in the X-ray and gamma-ray furnace to above 1400C melted and cooled. This process heats from the inside unlike normal furnaces. The melted spherical samples were examined with a range of techniques and found to have microstructural properties similar to the chondrules that come from meteorites. This experiment demonstrates that GRBs can melt precursor material to form chondrules that may subsequently influence the formation of planets. This work extends the field of laboratory astrophysics to include high power synchrotron sources.
ISSN:2331-8422
DOI:10.48550/arxiv.0407306