Rate equations for Coulomb blockade with ferromagnetic leads

We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between degenerate many-electron states that the standard rate equation formalism in terms of oc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2004-12
Hauptverfasser: Braig, Stephan, Brouwer, Piet W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between degenerate many-electron states that the standard rate equation formalism in terms of occupation probabilities cannot describe. Our formalism is valid for an arbitrary number of electrons on the dot, for an arbitrary angle between the polarization directions of the leads, and with or without spin-orbit scattering on the metal particle. Interestingly, we find that the density-matrix description may be necessary even for metal particles with unpolarized leads if three or more single-electron levels contribute to the transport current and electron-electron interactions in the metal particle are described by the `universal interaction Hamiltonian'.
ISSN:2331-8422
DOI:10.48550/arxiv.0412592