Five-loop renormalization-group expansions for the three-dimensional n-vector cubic model and critical exponents for impure Ising systems
The renormalization-group (RG) functions for the three-dimensional n-vector cubic model are calculated in the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the three-dimensional impure Ising systems are extracted from the five-loop RG series by...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2000-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The renormalization-group (RG) functions for the three-dimensional n-vector cubic model are calculated in the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the three-dimensional impure Ising systems are extracted from the five-loop RG series by means of the Pade-Borel-Leroy resummation under n = 0. These exponents are found to be: \gamma = 1.325 +/- 0.003, \eta = 0.025 +/- 0.01, \nu = 0.671 +/- 0.005, \alpha = - 0.0125 +/- 0.008, \beta = 0.344 +/- 0.006. For the correction-to-scaling exponent, the less accurate estimate \omega = 0.32 +/- 0.06 is obtained. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.9912071 |