Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions

Cadmium (Cd) pollution in rice and its transfer to food chain are cause of global concern. Application of zinc (Zn) can reduce Cd uptake by plants, as both these metals are generally antagonistic in soil–plant systems. In a field experiment on Cd-contaminated acid soil, we investigated the effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2018-10, Vol.25 (29), p.29287-29294
Hauptverfasser: Wang, Hui, Xu, Chao, Luo, Zun-chang, Zhu, Han-hua, Wang, Shuai, Zhu, Qi-hong, Huang, Dao-you, Zhang, Yang-zhu, Xiong, Jie, He, Yan-bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cadmium (Cd) pollution in rice and its transfer to food chain are cause of global concern. Application of zinc (Zn) can reduce Cd uptake by plants, as both these metals are generally antagonistic in soil–plant systems. In a field experiment on Cd-contaminated acid soil, we investigated the effectiveness of foliar application of Zn in minimizing Cd accumulation and its effect on the content of mineral nutrient elements in rice. The treatment was done at an early grain filling stag using 0.3 and 0.5% w / v ZnSO 4 ·7H 2 O solution. The spray did not affect the grain yield of rice but decreased the Cd concentration in the root, straw, husk, and brown rice to some extent and increased the Zn concentration. Foliar application of 0.5% ZnSO 4 resulted in maximum Zn concentration and minimum Cd concentration in brown rice. However, the concentrations of P, K, Ca, Mg, Cu, and Mn in brown rice were not affected. The correlation between Cd and Zn concentrations in brown rice, husk, and root was significantly negative, and that between Cd and Mn concentrations in brown rice was significantly positive. The inhibition of Cd uptake resulted in a decrease in its concentration in brown rice after the treatments. Thus, the foliar application of a suitable concentration of Zn at the early grain filling stage could effectively minimize the Cd concentration while enhancing the Zn concentration in brown rice on Cd-contaminated acid soil.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-018-2938-6