General rank-based estimation for regression single index models
This study considers rank estimation of the regression coefficients of the single index regression model. Conditions needed for the consistency and asymptotic normality of the proposed estimator are established. Monte Carlo simulation experiments demonstrate the robustness and efficiency of the prop...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2018-10, Vol.70 (5), p.1115-1146 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study considers rank estimation of the regression coefficients of the single index regression model. Conditions needed for the consistency and asymptotic normality of the proposed estimator are established. Monte Carlo simulation experiments demonstrate the robustness and efficiency of the proposed estimator compared to the semiparametric least squares estimator. A real-life example illustrates that the rank regression procedure effectively corrects model nonlinearity even in the presence of outliers in the response space. |
---|---|
ISSN: | 0020-3157 1572-9052 |
DOI: | 10.1007/s10463-017-0618-9 |