Asymptotic behavior of global solutions of the \(u_t=\Delta u + u^{p}\)

We study the asymptotic behavior of nonnegative solutions of the semilinear parabolic problem {u_t=\Delta u + u^{p}, x\in\mathbb{R}^{N}, t>0 u(0)=u_{0}, x\in\mathbb{R}^{N}, t=0. It is known that the nonnegative solution \(u(t)\) of this problem blows up in finite time for \(1 1+ 2/N\) and the nor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-01
Hauptverfasser: Barraza, Oscar A, Langoni, Laura B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of nonnegative solutions of the semilinear parabolic problem {u_t=\Delta u + u^{p}, x\in\mathbb{R}^{N}, t>0 u(0)=u_{0}, x\in\mathbb{R}^{N}, t=0. It is known that the nonnegative solution \(u(t)\) of this problem blows up in finite time for \(1 1+ 2/N\) and the norm of \(u_{0}\) is small enough, the problem admits global solution. In this work, we use the entropy method to obtain the decay rate of the global solution \(u(t)\).
ISSN:2331-8422