Asymptotic behavior of global solutions of the \(u_t=\Delta u + u^{p}\)
We study the asymptotic behavior of nonnegative solutions of the semilinear parabolic problem {u_t=\Delta u + u^{p}, x\in\mathbb{R}^{N}, t>0 u(0)=u_{0}, x\in\mathbb{R}^{N}, t=0. It is known that the nonnegative solution \(u(t)\) of this problem blows up in finite time for \(1 1+ 2/N\) and the nor...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic behavior of nonnegative solutions of the semilinear parabolic problem {u_t=\Delta u + u^{p}, x\in\mathbb{R}^{N}, t>0 u(0)=u_{0}, x\in\mathbb{R}^{N}, t=0. It is known that the nonnegative solution \(u(t)\) of this problem blows up in finite time for \(1 1+ 2/N\) and the norm of \(u_{0}\) is small enough, the problem admits global solution. In this work, we use the entropy method to obtain the decay rate of the global solution \(u(t)\). |
---|---|
ISSN: | 2331-8422 |