On the linear wave regime of the Gross-Pitaevskii equation
We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equati...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bethuel, Fabrice Danchin, Raphael Smets, Didier |
description | We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090613861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090613861</sourcerecordid><originalsourceid>FETCH-proquest_journals_20906138613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8s9TKMlIVcjJzEtNLFIoTyxLVShKTc_MTVXITwPLuBflFxfrBmSWJKaWFWdnZiqkFpYmlmTm5_EwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgaWBmaGxBRATpwoAi5w2fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090613861</pqid></control><display><type>article</type><title>On the linear wave regime of the Gross-Pitaevskii equation</title><source>Freely Accessible Journals</source><creator>Bethuel, Fabrice ; Danchin, Raphael ; Smets, Didier</creator><creatorcontrib>Bethuel, Fabrice ; Danchin, Raphael ; Smets, Didier</creatorcontrib><description>We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lower bounds ; Perturbation ; Wave equations</subject><ispartof>arXiv.org, 2008-09</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bethuel, Fabrice</creatorcontrib><creatorcontrib>Danchin, Raphael</creatorcontrib><creatorcontrib>Smets, Didier</creatorcontrib><title>On the linear wave regime of the Gross-Pitaevskii equation</title><title>arXiv.org</title><description>We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.</description><subject>Lower bounds</subject><subject>Perturbation</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8s9TKMlIVcjJzEtNLFIoTyxLVShKTc_MTVXITwPLuBflFxfrBmSWJKaWFWdnZiqkFpYmlmTm5_EwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgaWBmaGxBRATpwoAi5w2fA</recordid><startdate>20080923</startdate><enddate>20080923</enddate><creator>Bethuel, Fabrice</creator><creator>Danchin, Raphael</creator><creator>Smets, Didier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080923</creationdate><title>On the linear wave regime of the Gross-Pitaevskii equation</title><author>Bethuel, Fabrice ; Danchin, Raphael ; Smets, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20906138613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Lower bounds</topic><topic>Perturbation</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Bethuel, Fabrice</creatorcontrib><creatorcontrib>Danchin, Raphael</creatorcontrib><creatorcontrib>Smets, Didier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bethuel, Fabrice</au><au>Danchin, Raphael</au><au>Smets, Didier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the linear wave regime of the Gross-Pitaevskii equation</atitle><jtitle>arXiv.org</jtitle><date>2008-09-23</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2008-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2090613861 |
source | Freely Accessible Journals |
subjects | Lower bounds Perturbation Wave equations |
title | On the linear wave regime of the Gross-Pitaevskii equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20linear%20wave%20regime%20of%20the%20Gross-Pitaevskii%20equation&rft.jtitle=arXiv.org&rft.au=Bethuel,%20Fabrice&rft.date=2008-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090613861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090613861&rft_id=info:pmid/&rfr_iscdi=true |