On the linear wave regime of the Gross-Pitaevskii equation

We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-09
Hauptverfasser: Bethuel, Fabrice, Danchin, Raphael, Smets, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bethuel, Fabrice
Danchin, Raphael
Smets, Didier
description We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090613861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090613861</sourcerecordid><originalsourceid>FETCH-proquest_journals_20906138613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8s9TKMlIVcjJzEtNLFIoTyxLVShKTc_MTVXITwPLuBflFxfrBmSWJKaWFWdnZiqkFpYmlmTm5_EwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgaWBmaGxBRATpwoAi5w2fA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090613861</pqid></control><display><type>article</type><title>On the linear wave regime of the Gross-Pitaevskii equation</title><source>Freely Accessible Journals</source><creator>Bethuel, Fabrice ; Danchin, Raphael ; Smets, Didier</creator><creatorcontrib>Bethuel, Fabrice ; Danchin, Raphael ; Smets, Didier</creatorcontrib><description>We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lower bounds ; Perturbation ; Wave equations</subject><ispartof>arXiv.org, 2008-09</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bethuel, Fabrice</creatorcontrib><creatorcontrib>Danchin, Raphael</creatorcontrib><creatorcontrib>Smets, Didier</creatorcontrib><title>On the linear wave regime of the Gross-Pitaevskii equation</title><title>arXiv.org</title><description>We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.</description><subject>Lower bounds</subject><subject>Perturbation</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw8s9TKMlIVcjJzEtNLFIoTyxLVShKTc_MTVXITwPLuBflFxfrBmSWJKaWFWdnZiqkFpYmlmTm5_EwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRgaWBmaGxBRATpwoAi5w2fA</recordid><startdate>20080923</startdate><enddate>20080923</enddate><creator>Bethuel, Fabrice</creator><creator>Danchin, Raphael</creator><creator>Smets, Didier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080923</creationdate><title>On the linear wave regime of the Gross-Pitaevskii equation</title><author>Bethuel, Fabrice ; Danchin, Raphael ; Smets, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20906138613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Lower bounds</topic><topic>Perturbation</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Bethuel, Fabrice</creatorcontrib><creatorcontrib>Danchin, Raphael</creatorcontrib><creatorcontrib>Smets, Didier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bethuel, Fabrice</au><au>Danchin, Raphael</au><au>Smets, Didier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the linear wave regime of the Gross-Pitaevskii equation</atitle><jtitle>arXiv.org</jtitle><date>2008-09-23</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2008-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090613861
source Freely Accessible Journals
subjects Lower bounds
Perturbation
Wave equations
title On the linear wave regime of the Gross-Pitaevskii equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20linear%20wave%20regime%20of%20the%20Gross-Pitaevskii%20equation&rft.jtitle=arXiv.org&rft.au=Bethuel,%20Fabrice&rft.date=2008-09-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090613861%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090613861&rft_id=info:pmid/&rfr_iscdi=true