On the linear wave regime of the Gross-Pitaevskii equation

We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-09
Hauptverfasser: Bethuel, Fabrice, Danchin, Raphael, Smets, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a long wave-length asymptotics for the Gross-Pitaevskii equation corresponding to perturbation of a constant state of modulus one. We exhibit lower bounds on the first occurence of possible zeros (vortices) and compare the solutions with the corresponding solutions to the linear wave equation or variants. The results rely on the use of the Madelung transform, which yields the hydrodynamical form of the Gross-Pitaevskii equation, as well as of an augmented system.
ISSN:2331-8422