Structural phase transitions and their influence on Cu+ mobility in superionic ferroelastic Cu6PS5I single crystals
The structural origin of Cu+ ions conductivity in Cu6PS5I single crystals is described in terms of structural phase transitions studied by X-ray diffraction, polarizing microscope and calorimetric measurements. Below the phase transition at Tc=(144-169) K Cu6PS5I belongs to monoclinic, ferroelastic...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The structural origin of Cu+ ions conductivity in Cu6PS5I single crystals is described in terms of structural phase transitions studied by X-ray diffraction, polarizing microscope and calorimetric measurements. Below the phase transition at Tc=(144-169) K Cu6PS5I belongs to monoclinic, ferroelastic phase, space group Cc. Above Tc crystal changes the symmetry to cubic superstructure, space group F-43c (a=19.528); finally at 274K disordering of the Cu+ ions increases the symmetry to F-43m, (a=9.794). The phase transition at 274K coincides well with a strong anomaly in electrical conductivity observed in the Arrhenius plot. Diffusion paths for Cu+ ions are evidenced by means of the atomic displacement factors and split model. Influence of the copper stechiometry on the Tc is also discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0507300 |