Convergence rates for adaptive finite elements
In this article we prove that it is possible to construct, using newest-vertex bisection, meshes that equidistribute the error in \(H^1\)-norm, whenever the function to approximate can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we prove that it is possible to construct, using newest-vertex bisection, meshes that equidistribute the error in \(H^1\)-norm, whenever the function to approximate can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points. This decomposition is usual in regularity results of Partial Differential Equations (PDE). As a consequence, the meshes turn out to be quasi-optimal, and convergence rates for adaptive finite element methods (AFEM) using Lagrange finite elements of any polynomial degree are obtained. |
---|---|
ISSN: | 2331-8422 |