Convergence rates for adaptive finite elements

In this article we prove that it is possible to construct, using newest-vertex bisection, meshes that equidistribute the error in \(H^1\)-norm, whenever the function to approximate can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-03
Hauptverfasser: Gaspoz, Fernando D, Morin, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we prove that it is possible to construct, using newest-vertex bisection, meshes that equidistribute the error in \(H^1\)-norm, whenever the function to approximate can be decomposed as a sum of a regular part plus a singular part with singularities around a finite number of points. This decomposition is usual in regularity results of Partial Differential Equations (PDE). As a consequence, the meshes turn out to be quasi-optimal, and convergence rates for adaptive finite element methods (AFEM) using Lagrange finite elements of any polynomial degree are obtained.
ISSN:2331-8422