Enthalpy of formation of U^sub 3^Si^sub 2^: A high-temperature drop calorimetry study
U3Si2 is presently receiving consideration as a high density light water reactor fuel. A reliable knowledge of the formation enthalpy of U3Si2 not only helps study the thermal stability but also facilitate the modeling efforts by serving as a benchmark parameter for thermodynamic calculations of pha...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2018-08, Vol.507, p.44 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | U3Si2 is presently receiving consideration as a high density light water reactor fuel. A reliable knowledge of the formation enthalpy of U3Si2 not only helps study the thermal stability but also facilitate the modeling efforts by serving as a benchmark parameter for thermodynamic calculations of phase equilibria at high temperatures. Previous high temperature thermal analysis on U3Si2 laid the basis for us to conduct two types of high-temperature drop calorimetric measurements to determine its enthalpy of formation: oxide-melt drop-solution calorimetry and transposed temperature drop calorimetry, from which the results obtained are consistent. The determined standard enthalpy of formation of U3Si2 per mole atom, −33.2 ± 3.1 kJ/mol⋅at.%, is in good agreement with previously reported values obtained by other techniques. Our drop calorimetry methods will be used for thermodynamic studies of other U-Si compounds whose enthalpies of formation are not available. |
---|---|
ISSN: | 0022-3115 1873-4820 |