(q\)-Analogue of the Dunkl transform on the real line

In this paper, we consider a \(q\)-analogue of the Dunkl operator on \(\mathbb{R}\), we define and study its associated Fourier transform which is a \(q\)-analogue of the Dunkl transform. In addition to several properties, we establish an inversion formula and prove a Plancherel theorem for this \(q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-12
Hauptverfasser: Bettaibi, Néji, bettaieb, Rym H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a \(q\)-analogue of the Dunkl operator on \(\mathbb{R}\), we define and study its associated Fourier transform which is a \(q\)-analogue of the Dunkl transform. In addition to several properties, we establish an inversion formula and prove a Plancherel theorem for this \(q\)-Dunkl transform. Next, we study the \(q\)-Dunkl intertwining operator and its dual via the \(q\)-analogues of the Riemann-Liouville and Weyl transforms. Using this dual intertwining operator, we provide a relation between the \(q\)-Dunkl transform and the \(q^2\)-analogue Fourier transform introduced and studied by R. Rubin.
ISSN:2331-8422