Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release

Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2018-01, Vol.2018 (2018), p.1-14
Hauptverfasser: Davis, Richey M., Riffle, Judy S., Mefford, Olin Thompson, Bohórquez, Ana C., Jo, Ami, Pothayee, Nipon, Hu, Nan, Pothayee, Nikorn, Fellows, Benjamin, Zhang, Rui, Rinaldi, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 2018
container_start_page 1
container_title Journal of nanomaterials
container_volume 2018
creator Davis, Richey M.
Riffle, Judy S.
Mefford, Olin Thompson
Bohórquez, Ana C.
Jo, Ami
Pothayee, Nipon
Hu, Nan
Pothayee, Nikorn
Fellows, Benjamin
Zhang, Rui
Rinaldi, Carlos
description Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueous media, and their sizes were stable under simulated physiological conditions for at least 7 days. The anticancer drugs, cisplatin and carboplatin, were loaded into the complexes, and sustained release of both drugs was observed. The transverse NMR relaxivities (r2s) of the complexes were 244 s−1 (mM Fe)−1 which is fast compared to either the commercial T2-weighted MRI agent Feridex IV® or our previously reported magnetite-block ionomer complexes. Phantom MRI images of the complexes demonstrated excellent negative contrast effects of such complexes. Thus, the bisphosphonate-bearing MGICs could be promising candidates for dual drug delivery and magnetic resonance imaging. Moreover, the bisphosphonate MGICs generate heat under an alternating magnetic field of 30 kA·m−1 at 206 kHz. The temperature of the MGIC dispersion in deionized water increased from 37 to 41°C after exposure to the magnetic field for 10 minutes, corresponding to a specific absorption rate of 77.0 W·g−1. This suggests their potential as hyperthermia treatment agents as well as the possibility of temperature-dependent drug release, making MGICs more versatile in potential drug delivery applications.
doi_str_mv 10.1155/2018/4341580
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2090541578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090541578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-dba5dc269588e15b3765c88677836a4a60beda889da324748cfed8bd3ac116b3</originalsourceid><addsrcrecordid>eNqF0cFu1DAUBdAIgUQZ2LFGllhCqJ3EibMcOi2t1JYKzT56sV9mXMV2sB3a-aj-Ix5SwZKF5Sfr-FryzbL3jH5hjPPTgjJxWpUV44K-yE5YLZq8YkX78u_M6OvsTQj3lFa85cVJ9rQ2xlk9G_JVh2nvjstCRHLnxoNBryW5gZ3FmIZbsE46M434iIEMzpO7EaK26fLaJgBWoicbP-_IBkf9C_2BgFXkysBO2x150HGfciMmDCO5PEzo4x690fDHbdGkE4izx3yDE1qV5JL3A0eEgG-zVwOMAd8976tse3G-PbvMr79_uzpbX-eyrGnMVQ9cyaJuuRDIeF82NZdC1E0jyhoqqGmPCoRoFZRF1VRCDqhEr0qQjNV9uco-LrGTdz9nDLG7d7O36cWuoC3l6YNT0ir7vCjpXQgeh27y2oA_dIx2xz66Yx_dcx-Jf1r4XlsFD_p_-sOiMRkc4J9mbaq0Ln8DsfuYZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090541578</pqid></control><display><type>article</type><title>Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Davis, Richey M. ; Riffle, Judy S. ; Mefford, Olin Thompson ; Bohórquez, Ana C. ; Jo, Ami ; Pothayee, Nipon ; Hu, Nan ; Pothayee, Nikorn ; Fellows, Benjamin ; Zhang, Rui ; Rinaldi, Carlos</creator><contributor>Espinosa, Ana ; Ana Espinosa</contributor><creatorcontrib>Davis, Richey M. ; Riffle, Judy S. ; Mefford, Olin Thompson ; Bohórquez, Ana C. ; Jo, Ami ; Pothayee, Nipon ; Hu, Nan ; Pothayee, Nikorn ; Fellows, Benjamin ; Zhang, Rui ; Rinaldi, Carlos ; Espinosa, Ana ; Ana Espinosa</creatorcontrib><description>Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueous media, and their sizes were stable under simulated physiological conditions for at least 7 days. The anticancer drugs, cisplatin and carboplatin, were loaded into the complexes, and sustained release of both drugs was observed. The transverse NMR relaxivities (r2s) of the complexes were 244 s−1 (mM Fe)−1 which is fast compared to either the commercial T2-weighted MRI agent Feridex IV® or our previously reported magnetite-block ionomer complexes. Phantom MRI images of the complexes demonstrated excellent negative contrast effects of such complexes. Thus, the bisphosphonate-bearing MGICs could be promising candidates for dual drug delivery and magnetic resonance imaging. Moreover, the bisphosphonate MGICs generate heat under an alternating magnetic field of 30 kA·m−1 at 206 kHz. The temperature of the MGIC dispersion in deionized water increased from 37 to 41°C after exposure to the magnetic field for 10 minutes, corresponding to a specific absorption rate of 77.0 W·g−1. This suggests their potential as hyperthermia treatment agents as well as the possibility of temperature-dependent drug release, making MGICs more versatile in potential drug delivery applications.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2018/4341580</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Binding sites ; Biocompatibility ; Bisphosphonates ; Brain cancer ; Cancer therapies ; Chemistry ; Computer simulation ; Contrast agents ; Cytotoxicity ; Deionization ; Drug delivery systems ; Drugs ; Fever ; Graft copolymers ; Hyperthermia ; Image contrast ; Ligands ; Magnetic fields ; Magnetic resonance imaging ; Magnetite ; Medical imaging ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Platinum ; Polymers ; Self-assembly ; Sustained release ; Temperature dependence ; Tumors</subject><ispartof>Journal of nanomaterials, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 Rui Zhang et al.</rights><rights>Copyright © 2018 Rui Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-dba5dc269588e15b3765c88677836a4a60beda889da324748cfed8bd3ac116b3</citedby><cites>FETCH-LOGICAL-c360t-dba5dc269588e15b3765c88677836a4a60beda889da324748cfed8bd3ac116b3</cites><orcidid>0000-0003-4164-2176 ; 0000-0002-6291-6095 ; 0000-0002-1373-2556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Espinosa, Ana</contributor><contributor>Ana Espinosa</contributor><creatorcontrib>Davis, Richey M.</creatorcontrib><creatorcontrib>Riffle, Judy S.</creatorcontrib><creatorcontrib>Mefford, Olin Thompson</creatorcontrib><creatorcontrib>Bohórquez, Ana C.</creatorcontrib><creatorcontrib>Jo, Ami</creatorcontrib><creatorcontrib>Pothayee, Nipon</creatorcontrib><creatorcontrib>Hu, Nan</creatorcontrib><creatorcontrib>Pothayee, Nikorn</creatorcontrib><creatorcontrib>Fellows, Benjamin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rinaldi, Carlos</creatorcontrib><title>Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release</title><title>Journal of nanomaterials</title><description>Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueous media, and their sizes were stable under simulated physiological conditions for at least 7 days. The anticancer drugs, cisplatin and carboplatin, were loaded into the complexes, and sustained release of both drugs was observed. The transverse NMR relaxivities (r2s) of the complexes were 244 s−1 (mM Fe)−1 which is fast compared to either the commercial T2-weighted MRI agent Feridex IV® or our previously reported magnetite-block ionomer complexes. Phantom MRI images of the complexes demonstrated excellent negative contrast effects of such complexes. Thus, the bisphosphonate-bearing MGICs could be promising candidates for dual drug delivery and magnetic resonance imaging. Moreover, the bisphosphonate MGICs generate heat under an alternating magnetic field of 30 kA·m−1 at 206 kHz. The temperature of the MGIC dispersion in deionized water increased from 37 to 41°C after exposure to the magnetic field for 10 minutes, corresponding to a specific absorption rate of 77.0 W·g−1. This suggests their potential as hyperthermia treatment agents as well as the possibility of temperature-dependent drug release, making MGICs more versatile in potential drug delivery applications.</description><subject>Binding sites</subject><subject>Biocompatibility</subject><subject>Bisphosphonates</subject><subject>Brain cancer</subject><subject>Cancer therapies</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Contrast agents</subject><subject>Cytotoxicity</subject><subject>Deionization</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Fever</subject><subject>Graft copolymers</subject><subject>Hyperthermia</subject><subject>Image contrast</subject><subject>Ligands</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Magnetite</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Platinum</subject><subject>Polymers</subject><subject>Self-assembly</subject><subject>Sustained release</subject><subject>Temperature dependence</subject><subject>Tumors</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0cFu1DAUBdAIgUQZ2LFGllhCqJ3EibMcOi2t1JYKzT56sV9mXMV2sB3a-aj-Ix5SwZKF5Sfr-FryzbL3jH5hjPPTgjJxWpUV44K-yE5YLZq8YkX78u_M6OvsTQj3lFa85cVJ9rQ2xlk9G_JVh2nvjstCRHLnxoNBryW5gZ3FmIZbsE46M434iIEMzpO7EaK26fLaJgBWoicbP-_IBkf9C_2BgFXkysBO2x150HGfciMmDCO5PEzo4x690fDHbdGkE4izx3yDE1qV5JL3A0eEgG-zVwOMAd8976tse3G-PbvMr79_uzpbX-eyrGnMVQ9cyaJuuRDIeF82NZdC1E0jyhoqqGmPCoRoFZRF1VRCDqhEr0qQjNV9uco-LrGTdz9nDLG7d7O36cWuoC3l6YNT0ir7vCjpXQgeh27y2oA_dIx2xz66Yx_dcx-Jf1r4XlsFD_p_-sOiMRkc4J9mbaq0Ln8DsfuYZA</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Davis, Richey M.</creator><creator>Riffle, Judy S.</creator><creator>Mefford, Olin Thompson</creator><creator>Bohórquez, Ana C.</creator><creator>Jo, Ami</creator><creator>Pothayee, Nipon</creator><creator>Hu, Nan</creator><creator>Pothayee, Nikorn</creator><creator>Fellows, Benjamin</creator><creator>Zhang, Rui</creator><creator>Rinaldi, Carlos</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4164-2176</orcidid><orcidid>https://orcid.org/0000-0002-6291-6095</orcidid><orcidid>https://orcid.org/0000-0002-1373-2556</orcidid></search><sort><creationdate>20180101</creationdate><title>Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release</title><author>Davis, Richey M. ; Riffle, Judy S. ; Mefford, Olin Thompson ; Bohórquez, Ana C. ; Jo, Ami ; Pothayee, Nipon ; Hu, Nan ; Pothayee, Nikorn ; Fellows, Benjamin ; Zhang, Rui ; Rinaldi, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-dba5dc269588e15b3765c88677836a4a60beda889da324748cfed8bd3ac116b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding sites</topic><topic>Biocompatibility</topic><topic>Bisphosphonates</topic><topic>Brain cancer</topic><topic>Cancer therapies</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Contrast agents</topic><topic>Cytotoxicity</topic><topic>Deionization</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Fever</topic><topic>Graft copolymers</topic><topic>Hyperthermia</topic><topic>Image contrast</topic><topic>Ligands</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Magnetite</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Platinum</topic><topic>Polymers</topic><topic>Self-assembly</topic><topic>Sustained release</topic><topic>Temperature dependence</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Richey M.</creatorcontrib><creatorcontrib>Riffle, Judy S.</creatorcontrib><creatorcontrib>Mefford, Olin Thompson</creatorcontrib><creatorcontrib>Bohórquez, Ana C.</creatorcontrib><creatorcontrib>Jo, Ami</creatorcontrib><creatorcontrib>Pothayee, Nipon</creatorcontrib><creatorcontrib>Hu, Nan</creatorcontrib><creatorcontrib>Pothayee, Nikorn</creatorcontrib><creatorcontrib>Fellows, Benjamin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Rinaldi, Carlos</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Richey M.</au><au>Riffle, Judy S.</au><au>Mefford, Olin Thompson</au><au>Bohórquez, Ana C.</au><au>Jo, Ami</au><au>Pothayee, Nipon</au><au>Hu, Nan</au><au>Pothayee, Nikorn</au><au>Fellows, Benjamin</au><au>Zhang, Rui</au><au>Rinaldi, Carlos</au><au>Espinosa, Ana</au><au>Ana Espinosa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release</atitle><jtitle>Journal of nanomaterials</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueous media, and their sizes were stable under simulated physiological conditions for at least 7 days. The anticancer drugs, cisplatin and carboplatin, were loaded into the complexes, and sustained release of both drugs was observed. The transverse NMR relaxivities (r2s) of the complexes were 244 s−1 (mM Fe)−1 which is fast compared to either the commercial T2-weighted MRI agent Feridex IV® or our previously reported magnetite-block ionomer complexes. Phantom MRI images of the complexes demonstrated excellent negative contrast effects of such complexes. Thus, the bisphosphonate-bearing MGICs could be promising candidates for dual drug delivery and magnetic resonance imaging. Moreover, the bisphosphonate MGICs generate heat under an alternating magnetic field of 30 kA·m−1 at 206 kHz. The temperature of the MGIC dispersion in deionized water increased from 37 to 41°C after exposure to the magnetic field for 10 minutes, corresponding to a specific absorption rate of 77.0 W·g−1. This suggests their potential as hyperthermia treatment agents as well as the possibility of temperature-dependent drug release, making MGICs more versatile in potential drug delivery applications.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4341580</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4164-2176</orcidid><orcidid>https://orcid.org/0000-0002-6291-6095</orcidid><orcidid>https://orcid.org/0000-0002-1373-2556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2018-01, Vol.2018 (2018), p.1-14
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_journals_2090541578
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Binding sites
Biocompatibility
Bisphosphonates
Brain cancer
Cancer therapies
Chemistry
Computer simulation
Contrast agents
Cytotoxicity
Deionization
Drug delivery systems
Drugs
Fever
Graft copolymers
Hyperthermia
Image contrast
Ligands
Magnetic fields
Magnetic resonance imaging
Magnetite
Medical imaging
Nanoparticles
NMR
Nuclear magnetic resonance
Platinum
Polymers
Self-assembly
Sustained release
Temperature dependence
Tumors
title Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ammonium%20Bisphosphonate%20Polymeric%20Magnetic%20Nanocomplexes%20for%20Platinum%20Anticancer%20Drug%20Delivery%20and%20Imaging%20with%20Potential%20Hyperthermia%20and%20Temperature-Dependent%20Drug%20Release&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Davis,%20Richey%20M.&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2018/4341580&rft_dat=%3Cproquest_cross%3E2090541578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090541578&rft_id=info:pmid/&rfr_iscdi=true