Ammonium Bisphosphonate Polymeric Magnetic Nanocomplexes for Platinum Anticancer Drug Delivery and Imaging with Potential Hyperthermia and Temperature-Dependent Drug Release
Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueou...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel magnetite-ammonium bisphosphonate graft ionic copolymer nanocomplexes (MGICs) have been developed for potential drug delivery, magnetic resonance imaging, and hyperthermia applications. The complexes displayed relatively uniform sizes with narrow size distributions upon self-assembly in aqueous media, and their sizes were stable under simulated physiological conditions for at least 7 days. The anticancer drugs, cisplatin and carboplatin, were loaded into the complexes, and sustained release of both drugs was observed. The transverse NMR relaxivities (r2s) of the complexes were 244 s−1 (mM Fe)−1 which is fast compared to either the commercial T2-weighted MRI agent Feridex IV® or our previously reported magnetite-block ionomer complexes. Phantom MRI images of the complexes demonstrated excellent negative contrast effects of such complexes. Thus, the bisphosphonate-bearing MGICs could be promising candidates for dual drug delivery and magnetic resonance imaging. Moreover, the bisphosphonate MGICs generate heat under an alternating magnetic field of 30 kA·m−1 at 206 kHz. The temperature of the MGIC dispersion in deionized water increased from 37 to 41°C after exposure to the magnetic field for 10 minutes, corresponding to a specific absorption rate of 77.0 W·g−1. This suggests their potential as hyperthermia treatment agents as well as the possibility of temperature-dependent drug release, making MGICs more versatile in potential drug delivery applications. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2018/4341580 |