The universal Vassiliev-Kontsevich invariant for framed oriented links
We give a generalization of the Reshetikhin-Turaev functor for tangles to get a combinatorial formula for the universal Vassiliev-Kontsevich invariant of framed oriented links which is coincident with the Kontsevich integral. The universal Vassiliev-Kontsevich invariant is constructed using the Drin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 1994-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a generalization of the Reshetikhin-Turaev functor for tangles to get a combinatorial formula for the universal Vassiliev-Kontsevich invariant of framed oriented links which is coincident with the Kontsevich integral. The universal Vassiliev-Kontsevich invariant is constructed using the Drinfeld associator. We prove the uniqueness of the Drinfeld associator. As a corollary one gets the rationality of the Kontsevich integral. Many properties of the universal Vassiliev-Kontsevich invariant are established. Connections to quantum group invariants and to multiple zeta values are discussed. |
---|---|
ISSN: | 2331-8422 |