A model for infection on graphs

We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-10
Hauptverfasser: Draief, M, Ganesh, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Draief, M
Ganesh, A
description We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graph including regular graphs and the classical Erdos-Renyi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090529970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090529970</sourcerecordid><originalsourceid>FETCH-proquest_journals_20905299703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQd1TIzU9JzVFIyy9SyMxLS00uyczPUwCi9KLEgoxiHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKwNDA1srQ0NzAmThUAke8sVA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090529970</pqid></control><display><type>article</type><title>A model for infection on graphs</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Draief, M ; Ganesh, A</creator><creatorcontrib>Draief, M ; Ganesh, A</creatorcontrib><description>We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graph including regular graphs and the classical Erdos-Renyi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphs ; Infections ; Network topologies ; Phase transitions ; Power law ; Random walk ; Viruses</subject><ispartof>arXiv.org, 2008-10</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Draief, M</creatorcontrib><creatorcontrib>Ganesh, A</creatorcontrib><title>A model for infection on graphs</title><title>arXiv.org</title><description>We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graph including regular graphs and the classical Erdos-Renyi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution.</description><subject>Graphs</subject><subject>Infections</subject><subject>Network topologies</subject><subject>Phase transitions</subject><subject>Power law</subject><subject>Random walk</subject><subject>Viruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQd1TIzU9JzVFIyy9SyMxLS00uyczPUwCi9KLEgoxiHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzKwNDA1srQ0NzAmThUAke8sVA</recordid><startdate>20081017</startdate><enddate>20081017</enddate><creator>Draief, M</creator><creator>Ganesh, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20081017</creationdate><title>A model for infection on graphs</title><author>Draief, M ; Ganesh, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20905299703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Graphs</topic><topic>Infections</topic><topic>Network topologies</topic><topic>Phase transitions</topic><topic>Power law</topic><topic>Random walk</topic><topic>Viruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Draief, M</creatorcontrib><creatorcontrib>Ganesh, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Draief, M</au><au>Ganesh, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A model for infection on graphs</atitle><jtitle>arXiv.org</jtitle><date>2008-10-17</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graph including regular graphs and the classical Erdos-Renyi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2008-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090529970
source Open Access: Freely Accessible Journals by multiple vendors
subjects Graphs
Infections
Network topologies
Phase transitions
Power law
Random walk
Viruses
title A model for infection on graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20model%20for%20infection%20on%20graphs&rft.jtitle=arXiv.org&rft.au=Draief,%20M&rft.date=2008-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090529970%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090529970&rft_id=info:pmid/&rfr_iscdi=true