A model for infection on graphs

We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-10
Hauptverfasser: Draief, M, Ganesh, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We address the question of understanding the effect of the underlying network topology on the spread of a virus and the dissemination of information when users are mobile performing independent random walks on a graph. To this end we propose a simple model of infection that enables to study the coincidence time of two random walkers on an arbitrary graph. By studying the coincidence time of a susceptible and an infected individual both moving in the graph we obtain estimates of the infection probability. The main result of this paper is to pinpoint the impact of the network topology on the infection probability. More precisely, we prove that for homogeneous graph including regular graphs and the classical Erdos-Renyi model, the coincidence time is inversely proportional to the number of nodes in the graph. We then study the model on power-law graphs, that exhibit heterogeneous connectivity patterns, and show the existence of a phase transition for the coincidence time depending on the parameter of the power-law of the degree distribution.
ISSN:2331-8422