Eigenvalue Estimates For The Dirac Operator On Kaehler-Einstein Manifolds Of Even Complex Dimension

In K\"ahler-Einstein case of positive scalar curvature and even complex dimension, an improved lower bound for the first eigenvalue of the Dirac operator is given. It is shown by a general construction that there are manifolds for which this new lower bound itself is the first eigenvalue.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-12
1. Verfasser: K -D Kirchberg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In K\"ahler-Einstein case of positive scalar curvature and even complex dimension, an improved lower bound for the first eigenvalue of the Dirac operator is given. It is shown by a general construction that there are manifolds for which this new lower bound itself is the first eigenvalue.
ISSN:2331-8422