Generalized Heine Identity for Complex Fourier Series of Binomials

In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z>1\), in terms of associated Legendre functions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-12
Hauptverfasser: Cohl, Howard S, Dominici, Diego E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cohl, Howard S
Dominici, Diego E
description In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z>1\), in terms of associated Legendre functions of the second kind with odd-half-integer degree and vanishing order. In this paper we give a generalization of this identity as a Fourier series of \(1/[z-\cos\psi]^\mu\), where \(z,\mu\in\C\), \(|z|>1\), and the coefficients of the expansion are given in terms of the same functions with order given by \(\frac12-\mu\). We are also able to compute certain closed-form expressions for associated Legendre functions of the second kind.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090501998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090501998</sourcerecordid><originalsourceid>FETCH-proquest_journals_20905019983</originalsourceid><addsrcrecordid>eNqNy0ELgjAYxvERBEn5HV7oLMzNlV6VzM51F8F3MJmbbROqT98OfYBOv8P_eTYkYZznWVkwtiOp9xOllJ3OTAiekPqKBt2g1QdH6FAZhNuIJqjwBmkdNHZeNL6gtatT6OCOEQ9WQq2MndWg_YFsZQTTn3tybC-PpssWZ58r-tBP8Wxi6hmtqKB5VZX8v9UXnL05kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090501998</pqid></control><display><type>article</type><title>Generalized Heine Identity for Complex Fourier Series of Binomials</title><source>Free E- Journals</source><creator>Cohl, Howard S ; Dominici, Diego E</creator><creatorcontrib>Cohl, Howard S ; Dominici, Diego E</creatorcontrib><description>In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z&gt;1\), in terms of associated Legendre functions of the second kind with odd-half-integer degree and vanishing order. In this paper we give a generalization of this identity as a Fourier series of \(1/[z-\cos\psi]^\mu\), where \(z,\mu\in\C\), \(|z|&gt;1\), and the coefficients of the expansion are given in terms of the same functions with order given by \(\frac12-\mu\). We are also able to compute certain closed-form expressions for associated Legendre functions of the second kind.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Binomials ; Fourier series ; Legendre functions ; Thermal expansion</subject><ispartof>arXiv.org, 2009-12</ispartof><rights>2009. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cohl, Howard S</creatorcontrib><creatorcontrib>Dominici, Diego E</creatorcontrib><title>Generalized Heine Identity for Complex Fourier Series of Binomials</title><title>arXiv.org</title><description>In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z&gt;1\), in terms of associated Legendre functions of the second kind with odd-half-integer degree and vanishing order. In this paper we give a generalization of this identity as a Fourier series of \(1/[z-\cos\psi]^\mu\), where \(z,\mu\in\C\), \(|z|&gt;1\), and the coefficients of the expansion are given in terms of the same functions with order given by \(\frac12-\mu\). We are also able to compute certain closed-form expressions for associated Legendre functions of the second kind.</description><subject>Binomials</subject><subject>Fourier series</subject><subject>Legendre functions</subject><subject>Thermal expansion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNy0ELgjAYxvERBEn5HV7oLMzNlV6VzM51F8F3MJmbbROqT98OfYBOv8P_eTYkYZznWVkwtiOp9xOllJ3OTAiekPqKBt2g1QdH6FAZhNuIJqjwBmkdNHZeNL6gtatT6OCOEQ9WQq2MndWg_YFsZQTTn3tybC-PpssWZ58r-tBP8Wxi6hmtqKB5VZX8v9UXnL05kw</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Cohl, Howard S</creator><creator>Dominici, Diego E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20091201</creationdate><title>Generalized Heine Identity for Complex Fourier Series of Binomials</title><author>Cohl, Howard S ; Dominici, Diego E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20905019983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Binomials</topic><topic>Fourier series</topic><topic>Legendre functions</topic><topic>Thermal expansion</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohl, Howard S</creatorcontrib><creatorcontrib>Dominici, Diego E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohl, Howard S</au><au>Dominici, Diego E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized Heine Identity for Complex Fourier Series of Binomials</atitle><jtitle>arXiv.org</jtitle><date>2009-12-01</date><risdate>2009</risdate><eissn>2331-8422</eissn><abstract>In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z&gt;1\), in terms of associated Legendre functions of the second kind with odd-half-integer degree and vanishing order. In this paper we give a generalization of this identity as a Fourier series of \(1/[z-\cos\psi]^\mu\), where \(z,\mu\in\C\), \(|z|&gt;1\), and the coefficients of the expansion are given in terms of the same functions with order given by \(\frac12-\mu\). We are also able to compute certain closed-form expressions for associated Legendre functions of the second kind.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2009-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090501998
source Free E- Journals
subjects Binomials
Fourier series
Legendre functions
Thermal expansion
title Generalized Heine Identity for Complex Fourier Series of Binomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20Heine%20Identity%20for%20Complex%20Fourier%20Series%20of%20Binomials&rft.jtitle=arXiv.org&rft.au=Cohl,%20Howard%20S&rft.date=2009-12-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2090501998%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090501998&rft_id=info:pmid/&rfr_iscdi=true