Generalized Heine Identity for Complex Fourier Series of Binomials
In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z>1\), in terms of associated Legendre functions o...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we generalize an identity first given by Heinrich Eduard Heine in his treatise, {\it Handbuch der Kugelfunctionen, Theorie und Anwendungen (1881), which gives a Fourier series for \(1/[z-\cos\psi]^{1/2}\), for \(z,\psi\in\R\), and \(z>1\), in terms of associated Legendre functions of the second kind with odd-half-integer degree and vanishing order. In this paper we give a generalization of this identity as a Fourier series of \(1/[z-\cos\psi]^\mu\), where \(z,\mu\in\C\), \(|z|>1\), and the coefficients of the expansion are given in terms of the same functions with order given by \(\frac12-\mu\). We are also able to compute certain closed-form expressions for associated Legendre functions of the second kind. |
---|---|
ISSN: | 2331-8422 |