Global uniqueness from partial Cauchy data in two dimensions
We prove for a two dimensional bounded domain that the Cauchy data for the Schroedinger equation measured on an arbitrary open subset of the boundary determines uniquely the potential. This implies, for the conductivity equation, that if we measure the current fluxes at the boundary on an arbitrary...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove for a two dimensional bounded domain that the Cauchy data for the Schroedinger equation measured on an arbitrary open subset of the boundary determines uniquely the potential. This implies, for the conductivity equation, that if we measure the current fluxes at the boundary on an arbitrary open subset of the boundary produced by voltage potentials supported in the same subset, we can determine uniquely the conductivity. We use Carleman estimates with degenerate weight functions to construct appropriate complex geometrical optics solutions to prove the results. |
---|---|
ISSN: | 2331-8422 |