The semiflow of a reaction diffusion equation with a singular potential
We study the semiflow \(\mathcal{S}(t)\) defined by a semilinear parabolic equation with a singular square potential \(V(x)=\frac{\mu}{|x|^2}\). It is known that the Hardy-Poincar\'{e} inequality and its improved versions, have a prominent role on the definition of the natural phase space. Our...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2008-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the semiflow \(\mathcal{S}(t)\) defined by a semilinear parabolic equation with a singular square potential \(V(x)=\frac{\mu}{|x|^2}\). It is known that the Hardy-Poincar\'{e} inequality and its improved versions, have a prominent role on the definition of the natural phase space. Our study concerns the case \(0 |
---|---|
ISSN: | 2331-8422 |