The semiflow of a reaction diffusion equation with a singular potential

We study the semiflow \(\mathcal{S}(t)\) defined by a semilinear parabolic equation with a singular square potential \(V(x)=\frac{\mu}{|x|^2}\). It is known that the Hardy-Poincar\'{e} inequality and its improved versions, have a prominent role on the definition of the natural phase space. Our...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2008-02
Hauptverfasser: Karachalios, Nikos I, Zographopoulos, Nikos B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the semiflow \(\mathcal{S}(t)\) defined by a semilinear parabolic equation with a singular square potential \(V(x)=\frac{\mu}{|x|^2}\). It is known that the Hardy-Poincar\'{e} inequality and its improved versions, have a prominent role on the definition of the natural phase space. Our study concerns the case \(0
ISSN:2331-8422