Observation of the critical regime near Anderson localization of light

Diffusive transport is among the most common phenomena in nature [1]. However, as predicted by Anderson [2], diffusion may break down due to interference. This transition from diffusive transport to localization of waves should occur for any type of classical or quantum wave in any media as long as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2005-11
Hauptverfasser: Störzer, Martin, Gross, Peter, Aegerter, Christof M, Maret, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffusive transport is among the most common phenomena in nature [1]. However, as predicted by Anderson [2], diffusion may break down due to interference. This transition from diffusive transport to localization of waves should occur for any type of classical or quantum wave in any media as long as the wavelength becomes comparable to the transport mean free path \(\ell^*\) [3]. The signatures of localization and those of absorption, or bound states, can however be similar, such that an unequivocal proof of the existence of wave localization in disordered bulk materials is still lacking. Here we present measurements of time resolved non-classical diffusion of visible light in strongly scattering samples, which cannot be explained by absorption, sample geometry or reduction in transport velocity. Deviations from classical diffusion increase strongly with decreasing \(\ell^*\) as expected for a phase transition. This constitutes an experimental realization of the critical regime in the approach to Anderson localization.
ISSN:2331-8422
DOI:10.48550/arxiv.0511284