A Field Approach to 3D Gene Expression Pattern Characterization
We present a vector field method for obtaining the spatial organization of 3D patterns of gene expression based on gradients and lines of force obtained by numerical integration. The convergence of these lines of force in local maxima are centers of gene expression, providing a natural and powerful...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-11 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a vector field method for obtaining the spatial organization of 3D patterns of gene expression based on gradients and lines of force obtained by numerical integration. The convergence of these lines of force in local maxima are centers of gene expression, providing a natural and powerful framework to characterize the organization and dynamics of biological structures. We apply this novel methodology to analyze the expression pattern of the Enhanced Green Fluorescent Protein (EGFP) driven by the promoter of light chain myosin II during zebrafish heart formation. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0411020 |