Non-Split Geometry on Products of Vector Bundles

We propose a model in which a spliced vector bundle (with an arbitrary number of gauge structures in the splice) possesses a geometry which do not split. The model employs connection 1-forms with values in a space-product of Lie algebras, and therefore interlaces the various gauge structures in a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2000-08
1. Verfasser: Megged, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a model in which a spliced vector bundle (with an arbitrary number of gauge structures in the splice) possesses a geometry which do not split. The model employs connection 1-forms with values in a space-product of Lie algebras, and therefore interlaces the various gauge structures in a non-trivial manner. Special attention is given to the structure of the geometric ghost sector and the super-algebra it possesses: The ghosts emerge as \(x\)-dependent deformations at the gauge sector, and the associated BRST super algebra is realized as constraints that follow from the invariance of the curvature.
ISSN:2331-8422
DOI:10.48550/arxiv.9704124