Star-quantization of an infinite wall
In deformation quantization (a.k.a. the Wigner-Weyl-Moyal formulation of quantum mechanics), we consider a single quantum particle moving freely in one dimension, except for the presence of one infinite potential wall. Dias and Prata pointed out that, surprisingly, its stationary-state Wigner functi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-07 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In deformation quantization (a.k.a. the Wigner-Weyl-Moyal formulation of quantum mechanics), we consider a single quantum particle moving freely in one dimension, except for the presence of one infinite potential wall. Dias and Prata pointed out that, surprisingly, its stationary-state Wigner function does not obey the naive equation of motion, i.e. the naive stargenvalue (*-genvalue) equation. We review our recent work on this problem, that treats the infinite wall as the limit of a Liouville potential. Also included are some new results: (i) we show explicitly that the Wigner-Weyl transform of the usual density matrix is the physical solution, (ii) we prove that an effective-mass treatment of the problem is equivalent to the Liouville one, and (iii) we point out that self-adjointness of the operator Hamiltonian requires a boundary potential, but one different from that proposed by Dias and Prata. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0508005 |