Dynamic bounds on stochastic chemical kinetic systems using semidefinite programming

Applying the method of moments to the chemical master equation appearing in stochastic chemical kinetics often leads to the so-called closure problem. Recently, several authors showed that this problem can be partially overcome using moment-based semidefinite programs (SDPs). In particular, they sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2018-08, Vol.149 (7), p.074103-074103
Hauptverfasser: Dowdy, Garrett R., Barton, Paul I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Applying the method of moments to the chemical master equation appearing in stochastic chemical kinetics often leads to the so-called closure problem. Recently, several authors showed that this problem can be partially overcome using moment-based semidefinite programs (SDPs). In particular, they showed that moment-based SDPs can be used to calculate rigorous bounds on various descriptions of the stochastic chemical kinetic system’s stationary distribution(s)—for example, mean molecular counts, variances in these counts, and so on. In this paper, we show that these ideas can be extended to the corresponding dynamic problem, calculating time-varying bounds on the same descriptions.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.5029926