Solvable Lie algebras with naturally graded nilradicals and their invariants

The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-02
Hauptverfasser: Ancochea, J M, Campoamor-Stursberg, R, L Garcia Vergnolle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ancochea, J M
Campoamor-Stursberg, R
L Garcia Vergnolle
description The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension \(2n-1\), indicating that gauge theories (with ghosts) are possible on these subalgebras.
doi_str_mv 10.48550/arxiv.0511027
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2090040035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2090040035</sourcerecordid><originalsourceid>FETCH-proquest_journals_20900400353</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMgKOrq_MDZ-po0fsyiOHTTvbzaqJGQ6kta9d_bwR_gdAd3QkxTTLK11rggfts2QZ2mKFc9MZRKpfN1JuVATEK4I6JcrqTWaijyY-1aKp2B3BogdzUlU4CXjTfwFBsm5z5wZapMBd66TuyZXADyFcSbsQzWt8SWfAxj0b90zUx-HInZfnfaHuYPrp-NCbG41w37LhUSN4gZotLqv-sLDNpDVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2090040035</pqid></control><display><type>article</type><title>Solvable Lie algebras with naturally graded nilradicals and their invariants</title><source>Free E- Journals</source><creator>Ancochea, J M ; Campoamor-Stursberg, R ; L Garcia Vergnolle</creator><creatorcontrib>Ancochea, J M ; Campoamor-Stursberg, R ; L Garcia Vergnolle</creatorcontrib><description>The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension \(2n-1\), indicating that gauge theories (with ghosts) are possible on these subalgebras.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0511027</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Ghosts ; Invariants ; Lie groups ; Quantum theory</subject><ispartof>arXiv.org, 2006-02</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/math-ph/0511027.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27923</link.rule.ids></links><search><creatorcontrib>Ancochea, J M</creatorcontrib><creatorcontrib>Campoamor-Stursberg, R</creatorcontrib><creatorcontrib>L Garcia Vergnolle</creatorcontrib><title>Solvable Lie algebras with naturally graded nilradicals and their invariants</title><title>arXiv.org</title><description>The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension \(2n-1\), indicating that gauge theories (with ghosts) are possible on these subalgebras.</description><subject>Algebra</subject><subject>Ghosts</subject><subject>Invariants</subject><subject>Lie groups</subject><subject>Quantum theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNij0LwjAUAIMgKOrq_MDZ-po0fsyiOHTTvbzaqJGQ6kta9d_bwR_gdAd3QkxTTLK11rggfts2QZ2mKFc9MZRKpfN1JuVATEK4I6JcrqTWaijyY-1aKp2B3BogdzUlU4CXjTfwFBsm5z5wZapMBd66TuyZXADyFcSbsQzWt8SWfAxj0b90zUx-HInZfnfaHuYPrp-NCbG41w37LhUSN4gZotLqv-sLDNpDVw</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Ancochea, J M</creator><creator>Campoamor-Stursberg, R</creator><creator>L Garcia Vergnolle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20060201</creationdate><title>Solvable Lie algebras with naturally graded nilradicals and their invariants</title><author>Ancochea, J M ; Campoamor-Stursberg, R ; L Garcia Vergnolle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20900400353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algebra</topic><topic>Ghosts</topic><topic>Invariants</topic><topic>Lie groups</topic><topic>Quantum theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Ancochea, J M</creatorcontrib><creatorcontrib>Campoamor-Stursberg, R</creatorcontrib><creatorcontrib>L Garcia Vergnolle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ancochea, J M</au><au>Campoamor-Stursberg, R</au><au>L Garcia Vergnolle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Solvable Lie algebras with naturally graded nilradicals and their invariants</atitle><jtitle>arXiv.org</jtitle><date>2006-02-01</date><risdate>2006</risdate><eissn>2331-8422</eissn><abstract>The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension \(2n-1\), indicating that gauge theories (with ghosts) are possible on these subalgebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0511027</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2006-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2090040035
source Free E- Journals
subjects Algebra
Ghosts
Invariants
Lie groups
Quantum theory
title Solvable Lie algebras with naturally graded nilradicals and their invariants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A05%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Solvable%20Lie%20algebras%20with%20naturally%20graded%20nilradicals%20and%20their%20invariants&rft.jtitle=arXiv.org&rft.au=Ancochea,%20J%20M&rft.date=2006-02-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0511027&rft_dat=%3Cproquest%3E2090040035%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2090040035&rft_id=info:pmid/&rfr_iscdi=true