Solvable Lie algebras with naturally graded nilradicals and their invariants
The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an ass...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2006-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension \(2n-1\), indicating that gauge theories (with ghosts) are possible on these subalgebras. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0511027 |