Solvable Lie algebras with naturally graded nilradicals and their invariants

The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-02
Hauptverfasser: Ancochea, J M, Campoamor-Stursberg, R, L Garcia Vergnolle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The indecomposable solvable Lie algebras with graded nilradical of maximal nilindex and a Heisenberg subalgebra of codimension one are analyzed, and their generalized Casimir invariants calculated. It is shown that rank one solvable algebras have a contact form, which implies the existence of an associated dynamical system. Moreover, due to the structure of the quadratic Casimir operator of the nilradical, these algebras contain a maximal non-abelian quasi-classical Lie algebra of dimension \(2n-1\), indicating that gauge theories (with ghosts) are possible on these subalgebras.
ISSN:2331-8422
DOI:10.48550/arxiv.0511027