Classification of homogeneous CR-manifolds in dimension 4

Locally homogeneous CR-manifolds in dimension 3 were classified, up to local CR-equivalence, by E.Cartan. We classify, up to local CR-equivalence, all locally homogeneous CR-manifolds in dimension 4. The classification theorem enables us also to classify all symmetric CR-manifolds in dimension 4, up...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2009-12
Hauptverfasser: Beloshapka, V K, Kossovskiy, I G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Locally homogeneous CR-manifolds in dimension 3 were classified, up to local CR-equivalence, by E.Cartan. We classify, up to local CR-equivalence, all locally homogeneous CR-manifolds in dimension 4. The classification theorem enables us also to classify all symmetric CR-manifolds in dimension 4, up to local biholomorphic equivalence. We also prove that any 4-dimensional real Lie algebra can be realized as an algebra of affine vector fields in a domain in \(\CC{3}\), linearly independent at each point.
ISSN:2331-8422