Classification of homogeneous CR-manifolds in dimension 4
Locally homogeneous CR-manifolds in dimension 3 were classified, up to local CR-equivalence, by E.Cartan. We classify, up to local CR-equivalence, all locally homogeneous CR-manifolds in dimension 4. The classification theorem enables us also to classify all symmetric CR-manifolds in dimension 4, up...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2009-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Locally homogeneous CR-manifolds in dimension 3 were classified, up to local CR-equivalence, by E.Cartan. We classify, up to local CR-equivalence, all locally homogeneous CR-manifolds in dimension 4. The classification theorem enables us also to classify all symmetric CR-manifolds in dimension 4, up to local biholomorphic equivalence. We also prove that any 4-dimensional real Lie algebra can be realized as an algebra of affine vector fields in a domain in \(\CC{3}\), linearly independent at each point. |
---|---|
ISSN: | 2331-8422 |