Towards absorbing outer boundaries in General Relativity

We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0,T] x B_R, where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2006-09
Hauptverfasser: Buchman, Luisa T, Sarbach, Olivier C A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct exact solutions to the Bianchi equations on a flat spacetime background. When the constraints are satisfied, these solutions represent in- and outgoing linearized gravitational radiation. We then consider the Bianchi equations on a subset of flat spacetime of the form [0,T] x B_R, where B_R is a ball of radius R, and analyze different kinds of boundary conditions on \partial B_R. Our main results are: i) We give an explicit analytic example showing that boundary conditions obtained from freezing the incoming characteristic fields to their initial values are not compatible with the constraints. ii) With the help of the exact solutions constructed, we determine the amount of artificial reflection of gravitational radiation from constraint-preserving boundary conditions which freeze the Weyl scalar Psi_0 to its initial value. For monochromatic radiation with wave number k and arbitrary angular momentum number l >= 2, the amount of reflection decays as 1/(kR)^4 for large kR. iii) For each L >= 2, we construct new local constraint-preserving boundary conditions which perfectly absorb linearized radiation with l 1.04. Implications of these results for numerical simulations of binary black holes on finite domains are discussed.
ISSN:2331-8422
DOI:10.48550/arxiv.0608051