A precise CNOT gate in the presence of large fabrication induced variations of the exchange interaction strength

We demonstrate how using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known. We focus on the exchange interaction oscillation in silicon based solid-state architectures with a H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2007-01
Hauptverfasser: Testolin, M J, Hill, C D, Wellard, C J, Hollenberg, L C L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate how using two-qubit composite rotations a high fidelity controlled-NOT (CNOT) gate can be constructed, even when the strength of the interaction between qubits is not accurately known. We focus on the exchange interaction oscillation in silicon based solid-state architectures with a Heisenberg Hamiltonian. This method easily applies to a general two-qubit Hamiltonian. We show how the robust CNOT gate can achieve a very high fidelity when a single application of the composite rotations is combined with a modest level of Hamiltonian characterisation. Operating the robust CNOT gate in a suitably characterised system means concatenation of the composite pulse is unnecessary, hence reducing operation time, and ensuring the gate operates below the threshold required for fault-tolerant quantum computation.
ISSN:2331-8422
DOI:10.48550/arxiv.0701165