Row polynomial matrices of Riordan arrays
Let R=[rn,k]n,k≥0 be a Riordan array. Define the row polynomials Rn(q)=∑k=0nrn,kqk and the row polynomial matrix R(q)=[rn,k(q)]n,k≥0 by rn,k(q)=∑j=knrn,jqj−k. Then R(q) is also a Riordan array with the Rn(q) located on the leftmost column of R(q). In this paper we investigate combinatorial propertie...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-06, Vol.522, p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let R=[rn,k]n,k≥0 be a Riordan array. Define the row polynomials Rn(q)=∑k=0nrn,kqk and the row polynomial matrix R(q)=[rn,k(q)]n,k≥0 by rn,k(q)=∑j=knrn,jqj−k. Then R(q) is also a Riordan array with the Rn(q) located on the leftmost column of R(q). In this paper we investigate combinatorial properties of the matrix R(q) and the sequence (Rn(q))n≥0, including their characterizations, the q-total positivity of R(q) and the q-log-convexity of (Rn(q))n≥0. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2017.02.006 |