Modules over the algebra Vir(a,b)

For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-02, Vol.515, p.11-23
Hauptverfasser: Han, Jianzhi, Chen, Qiufan, Su, Yucai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 11
container_title Linear algebra and its applications
container_volume 515
creator Han, Jianzhi
Chen, Qiufan
Su, Yucai
description For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-weight modules over the algebra Vir(a,b) which are free U(CL0⊕CW0)-modules of rank 1. It is proved that such modules can only exist for a∈Z.
doi_str_mv 10.1016/j.laa.2016.11.002
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2089729931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516305183</els_id><sourcerecordid>2089729931</sourcerecordid><originalsourceid>FETCH-LOGICAL-e235t-739c88444884ab42bab86f2ccf23ca8519cd74f064757939b70729e45a76e0103</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AG8VLwq2ziRpk-BJFr9gxYt6DWk61Zay1aTd32-W9TIzvDzMDA9j5wgFAla3fTE4V_A0FogFAD9gC9RK5KjL6pAtUiJzoUx5zE5i7AFAKuALdvE6NvNAMRu3FLLpmzI3fFEdXPbZhSt3U1-fsqPWDZHO_vuSfTw-vK-e8_Xb08vqfp0TF-WUK2G81lLKVFwtee1qXbXc-5YL73SJxjdKtlBJVSojTK1AcUOydKoiQBBLdrnf-xPG35niZPtxDpt00nLQJsFGYKLu9hSlV7YdBRt9RxtPTRfIT7YZO4tgd05sb5MTu3NiEW0yIP4AXt5SSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089729931</pqid></control><display><type>article</type><title>Modules over the algebra Vir(a,b)</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Han, Jianzhi ; Chen, Qiufan ; Su, Yucai</creator><creatorcontrib>Han, Jianzhi ; Chen, Qiufan ; Su, Yucai</creatorcontrib><description>For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-weight modules over the algebra Vir(a,b) which are free U(CL0⊕CW0)-modules of rank 1. It is proved that such modules can only exist for a∈Z.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.11.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Algebra ; Central extensions ; Complex numbers ; Complexity theory ; Integer programming ; Lie groups ; Linear algebra ; Modules ; Non-weight modules ; The algebra [formula omitted] ; Weight</subject><ispartof>Linear algebra and its applications, 2017-02, Vol.515, p.11-23</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Feb 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2016.11.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Han, Jianzhi</creatorcontrib><creatorcontrib>Chen, Qiufan</creatorcontrib><creatorcontrib>Su, Yucai</creatorcontrib><title>Modules over the algebra Vir(a,b)</title><title>Linear algebra and its applications</title><description>For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-weight modules over the algebra Vir(a,b) which are free U(CL0⊕CW0)-modules of rank 1. It is proved that such modules can only exist for a∈Z.</description><subject>Algebra</subject><subject>Central extensions</subject><subject>Complex numbers</subject><subject>Complexity theory</subject><subject>Integer programming</subject><subject>Lie groups</subject><subject>Linear algebra</subject><subject>Modules</subject><subject>Non-weight modules</subject><subject>The algebra [formula omitted]</subject><subject>Weight</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK7-AG8VLwq2ziRpk-BJFr9gxYt6DWk61Zay1aTd32-W9TIzvDzMDA9j5wgFAla3fTE4V_A0FogFAD9gC9RK5KjL6pAtUiJzoUx5zE5i7AFAKuALdvE6NvNAMRu3FLLpmzI3fFEdXPbZhSt3U1-fsqPWDZHO_vuSfTw-vK-e8_Xb08vqfp0TF-WUK2G81lLKVFwtee1qXbXc-5YL73SJxjdKtlBJVSojTK1AcUOydKoiQBBLdrnf-xPG35niZPtxDpt00nLQJsFGYKLu9hSlV7YdBRt9RxtPTRfIT7YZO4tgd05sb5MTu3NiEW0yIP4AXt5SSA</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Han, Jianzhi</creator><creator>Chen, Qiufan</creator><creator>Su, Yucai</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170215</creationdate><title>Modules over the algebra Vir(a,b)</title><author>Han, Jianzhi ; Chen, Qiufan ; Su, Yucai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e235t-739c88444884ab42bab86f2ccf23ca8519cd74f064757939b70729e45a76e0103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Central extensions</topic><topic>Complex numbers</topic><topic>Complexity theory</topic><topic>Integer programming</topic><topic>Lie groups</topic><topic>Linear algebra</topic><topic>Modules</topic><topic>Non-weight modules</topic><topic>The algebra [formula omitted]</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Jianzhi</creatorcontrib><creatorcontrib>Chen, Qiufan</creatorcontrib><creatorcontrib>Su, Yucai</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Jianzhi</au><au>Chen, Qiufan</au><au>Su, Yucai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modules over the algebra Vir(a,b)</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-02-15</date><risdate>2017</risdate><volume>515</volume><spage>11</spage><epage>23</epage><pages>11-23</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-weight modules over the algebra Vir(a,b) which are free U(CL0⊕CW0)-modules of rank 1. It is proved that such modules can only exist for a∈Z.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.11.002</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-02, Vol.515, p.11-23
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2089729931
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Algebra
Central extensions
Complex numbers
Complexity theory
Integer programming
Lie groups
Linear algebra
Modules
Non-weight modules
The algebra [formula omitted]
Weight
title Modules over the algebra Vir(a,b)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A12%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modules%20over%20the%20algebra%20Vir(a,b)&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Han,%20Jianzhi&rft.date=2017-02-15&rft.volume=515&rft.spage=11&rft.epage=23&rft.pages=11-23&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.11.002&rft_dat=%3Cproquest_elsev%3E2089729931%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089729931&rft_id=info:pmid/&rft_els_id=S0024379516305183&rfr_iscdi=true