Modules over the algebra Vir(a,b)

For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-02, Vol.515, p.11-23
Hauptverfasser: Han, Jianzhi, Chen, Qiufan, Su, Yucai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-weight modules over the algebra Vir(a,b) which are free U(CL0⊕CW0)-modules of rank 1. It is proved that such modules can only exist for a∈Z.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2016.11.002