Modules over the algebra Vir(a,b)
For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-02, Vol.515, p.11-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any two complex numbers a and b, Vir(a,b) is a central extension of W(a,b) which is universal in the case (a,b)≠(0,1), where W(a,b) is the Lie algebra with basis {Ln,Wn|n∈Z} and relations [Lm,Ln]=(n−m)Lm+n, [Lm,Wn]=(a+n+bm)Wm+n, [Wm,Wn]=0. In this paper, we construct and classify a class of non-weight modules over the algebra Vir(a,b) which are free U(CL0⊕CW0)-modules of rank 1. It is proved that such modules can only exist for a∈Z. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2016.11.002 |