Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury
Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resista...
Gespeichert in:
Veröffentlicht in: | Marine biotechnology (New York, N.Y.) N.Y.), 2008-07, Vol.10 (4), p.471-477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resistant to mercury (BHRM) capable of growing at 25 ppm (mg L
−1
) or higher concentrations of mercury were tested during this study to evaluate their potential to detoxify Cd and Pb. Results indicate their potential of detoxification not only of Hg, but also Cd and Pb. Through biochemical and 16S rRNA gene sequence analyses, these bacteria were identified to belong to
Alcaligenes faecalis
(seven isolates),
Bacillus pumilus
(three isolates),
Bacillus
sp. (one isolate),
Pseudomonas aeruginosa
(one isolate), and
Brevibacterium iodinium
(one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb) as revealed by the scanning electron microscopy and energy dispersive x-ray spectroscopy, and/or precipitation as sulfide (for Pb). These bacteria removed more than 70% of Cd and 98% of Pb within 72 and 96 h, respectively, from growth medium that had initial metal concentrations of 100 ppm. Their detoxification efficiency for Hg, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals. |
---|---|
ISSN: | 1436-2228 1436-2236 |
DOI: | 10.1007/s10126-008-9083-z |