A General Approach of Quasi-Exactly Solvable Schroedinger Equations with Three Known Eigenstates
We propose a general method for constructing quasi-exactly solvable potentials with three analytic eigenstates. These potentials can be real or complex functions but the spectrum is real. A comparison with other methods is also performed.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2002-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a general method for constructing quasi-exactly solvable potentials with three analytic eigenstates. These potentials can be real or complex functions but the spectrum is real. A comparison with other methods is also performed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0209080 |