Bundle Theory of Improper Spin Transformations
{\it We first give a geometrical description of the action of the parity operator (\(\hat{P}\)) on non relativistic spin \({{1}\over{2}}\) Pauli spinors in terms of bundle theory. The relevant bundle, \(SU(2)\odot \Z_2\to O(3)\), is a non trivial extension of the universal covering group \(SU(2)\to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | {\it We first give a geometrical description of the action of the parity operator (\(\hat{P}\)) on non relativistic spin \({{1}\over{2}}\) Pauli spinors in terms of bundle theory. The relevant bundle, \(SU(2)\odot \Z_2\to O(3)\), is a non trivial extension of the universal covering group \(SU(2)\to SO(3)\). \(\hat{P}\) is the non relativistic limit of the corresponding Dirac matrix operator \({\cal P}=i\gamma_0\) and obeys \(\hat{P}^2=-1\). Then, from the direct product of O(3) by \(\Z_2\), naturally induced by the structure of the galilean group, we identify, in its double cover, the time reversal operator (\(\hat{T}\)) acting on spinors, and its product with \(\hat{P}\). Both, \(\hat{P}\) and \(\hat{T}\), generate the group \(\Z_4 \times \Z_2\). As in the case of parity, \(\hat{T}\) is the non relativistic limit of the corresponding Dirac matrix operator \({\cal T}=\gamma^3 \gamma^1\), and obeys \(\hat{T}^2=-1\).} |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0410079 |