Universal vortex formation in rotating traps with bosons and fermions
When a system consisting of many interacting particles is set rotating, it may form vortices. This is familiar to us from every-day life: you can observe vortices while stirring your coffee or watching a hurricane. In the world of quantum mechanics, famous examples of vortices are superconducting fi...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-04 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When a system consisting of many interacting particles is set rotating, it may form vortices. This is familiar to us from every-day life: you can observe vortices while stirring your coffee or watching a hurricane. In the world of quantum mechanics, famous examples of vortices are superconducting films and rotating bosonic \(^4\)He or fermionic \(^3\)He liquids. Vortices are also observed in rotating Bose-Einstein condensates in atomic traps and are predicted to exist for paired fermionic atoms. Here we show that the rotation of trapped particles with a repulsive interaction leads to a similar vortex formation, regardless of whether the particles are bosons or (unpaired) fermions. The exact, quantum mechanical many-particle wave function provides evidence that in fact, the mechanism of this vortex formation is the same for boson and fermion systems. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0404039 |