Ambipolar gate effect and low temperature magnetoresistance of ultrathin La0.8Ca0.2MnO3 Films
Ultrathin La0.8Ca0.2MnO3 films have been measured in a field-effect geometry. The electric field due to the gate produces a large ambipolar decrease in resistance at low temperatures. This is attributed to the development of a pseudogap in the density of states and the couple of localized charge to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ultrathin La0.8Ca0.2MnO3 films have been measured in a field-effect geometry. The electric field due to the gate produces a large ambipolar decrease in resistance at low temperatures. This is attributed to the development of a pseudogap in the density of states and the couple of localized charge to strain. The gate effect and mangetoresistance are interpreted in a consistent framework. The implications for the low temperature behavior of a manganite film in the two dimensional limit are discussed. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0407606 |