Long-range radiative interaction between semiconductor quantum dots
We develop a Maxwell-Schroedinger formalism in order to describe the radiative interaction mechanism between semiconductor quantum dots. We solve the Maxwell equations for the electromagnetic field coupled to the polarization field of a quantum dot ensemble through a linear non-local susceptibility...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2004-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a Maxwell-Schroedinger formalism in order to describe the radiative interaction mechanism between semiconductor quantum dots. We solve the Maxwell equations for the electromagnetic field coupled to the polarization field of a quantum dot ensemble through a linear non-local susceptibility and compute the polariton resonances of the system. The radiative coupling, mediated by both radiative and surface photon modes, causes the emergence of collective modes whose lifetimes are longer or shorter compared to the ones of non-interacting dots. The magnitude of the coupling and the collective mode energies depend on the detuning and on the mutual quantum dot distance. The spatial range of this coupling mechanism is of the order of the wavelength. This coupling should therefore be accounted for when considering quantum dots as building blocks of integrated systems for quantum information processing. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0411087 |