Development and Application of an Exponential Method for Integrating Stiff Systems Based on the Classical Runge–Kutta Method
We study numerical methods for solving stiff systems of ordinary differential equations. We propose an exponential computational algorithm which is constructed by using an exponential change of variables based on the classical Runge–Kutta method of the fourth order. Nonlinear problems are used to pr...
Gespeichert in:
Veröffentlicht in: | Differential equations 2018-07, Vol.54 (7), p.889-899 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study numerical methods for solving stiff systems of ordinary differential equations. We propose an exponential computational algorithm which is constructed by using an exponential change of variables based on the classical Runge–Kutta method of the fourth order. Nonlinear problems are used to prove and demonstrate the fourth order of convergence of the new method. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266118070066 |