Structure of Filled Functions: Why Gaussian and Cauchy Templates Are Most Efficient

One of the main problems of optimization algorithms is that they often end up in a local optimum. It is, therefore, necessary to make sure that the algorithm gets out of the local optimum and eventually reaches the global optimum. One of the promising ways guiding one from the local optimum is promp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Combinatorial Optimization Problems and Informatics 2016-09, Vol.7 (3), p.87
Hauptverfasser: Kalashnikov, Vyacheslav, Kreinovich, Vladik, Flores-Muñiz, José Guadalupe, Kalashnykova, Nataliya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the main problems of optimization algorithms is that they often end up in a local optimum. It is, therefore, necessary to make sure that the algorithm gets out of the local optimum and eventually reaches the global optimum. One of the promising ways guiding one from the local optimum is prompted by the filled function method. It turns out that empirically, the best smoothing functions to use in this method are the Gaussian and Cauchy functions. In this paper, we provide a possible theoretical explanation of this empirical effect.
ISSN:2007-1558