Hardness of WC-Co hard metals: Preparation, quantitative microstructure analysis, structure-property relationship and modelling

Different commercial WC-Co hard metals with carbide grain sizes ranging from ultrafine to coarse and Co contents between 4.2 and 25 wt.% have been investigated with regard to their microstructural and mechanical properties. Therefore, novel preparation strategies – including specific etching reactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refractory metals & hard materials 2018-09, Vol.75, p.287-293
Hauptverfasser: Kresse, T., Meinhard, D., Bernthaler, T., Schneider, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different commercial WC-Co hard metals with carbide grain sizes ranging from ultrafine to coarse and Co contents between 4.2 and 25 wt.% have been investigated with regard to their microstructural and mechanical properties. Therefore, novel preparation strategies – including specific etching reactions – and microscopic methods for the microstructural characterization were developed. Two sets of microscopic images were generated suitable for further semi-automatic determination of either the Co volume fraction φCo or the mean maximum Feret diameter dFer of the WC grains considering the irregular shape of the grains. Subsequently, the determined microstructural parameters and measured Vickers hardness values were used to develop a novel model calculating the hardness of WC-Co hard metals. The total hardness is mainly determined by the hard carbide whereby its influence is reduced by the soft Co binder phase. The current model is in good agreement with the measured values within almost the whole relevant hardness range of WC-Co hard metals (700 - 2300 HV 10) and do not require any statement of the existence of a carbide skeleton within the material and thus the Co binder mean free path which is essential for hardness models established so far but also hard to determined experimentally. So the current model is a significant simplification and improvement of the prediction of the hardness of WC-Co hard metals by means of microstructural parameters. [Display omitted] •Microstructural parameters were determined using semi-automated image analysis•A model for Vickers hardness based on these microstructural parameters is proposed•The model is in good agreement within the industrially relevant hardness range•The hardness is mainly determined by the WC grain size and the Co content
ISSN:0263-4368
2213-3917
DOI:10.1016/j.ijrmhm.2018.05.003